<u>Problem 1</u>: Miller indices and diamond lattice crystal structure (20 points)

The properties of semiconductors depend upon the crystalline orientation of the channel surface. A channel surface with higher atomic density is advantageous for hole transport. Given that the lattice constant of Si is 5.43Å, calculate the areal density of atoms (number/cm²) on each of the following planes: (100), (110), and (111). Based on your answers, which plane would you expect to be best for hole transport?

<u>Problem 2:</u> Density of states in one dimension. (20 points)

Show that the density of states of a free electron in one dimension is $D_1 = \frac{1}{\pi \hbar} \left(\frac{2m}{E}\right)^{\frac{1}{2}}$

Problem 3: Carrier Concentrations (20 points)

Consider a Si sample under equilibrium conditions, doped with Boron to a concentration 10^{17} cm⁻³. At T = 300K, is this material n-type or p-type? What are the majority and minority carrier concentrations?

Problem 4: Resistivity and Resistance (20 points)

- a) Consider a Si sample maintained at T = 300K under equilibrium conditions, doped with Boron to a concentration 2×10^{16} cm⁻³:
 - i) What are the electron and hole concentrations (*n* and *p*) in this sample? Is it n-type or p-type?
 - ii) Suppose the sample is doped additionally with Phosphorus to a concentration 6×10^{16} cm⁻³. Is the material now n-type or p-type?
- **b)** Ultra-thin semiconductor materials are of interest for future nanometer-scale transistors, but can present undesirably high resistance to current flow. How low must the resistivity of a semiconductor material be, to ensure that the resistance of a 2nm-thick, 10nm-long, 100nm-wide region does not exceed 100 ohms?

<u>Problem 5</u>: Low-k dielectric (20 points)

Search and read the literature to plot the change of dielectric constant (k) as a function of time or technology nodes for interlayer dielectrics in microprocessors.